US009092749B2

a2 United States Patent

Kern et al.

US 9,092,749 B2
Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

INFORMATION GOVERNANCE CROWD
SOURCING

Inventors: Robert Kern, Boeblingen (DE); Dan J.
Mandelstein, Austin, TX (US); Ivan M.
Milman, Austin, TX (US); Martin A.
Oberhofer, Bondorf (DE); Sushain
Pandit, Austin, TX (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 406 days.

Appl. No.: 13/446,681

Filed: Apr. 13, 2012

Prior Publication Data

US 2013/0275803 Al Oct. 17, 2013

Int. Cl1.

GO6F 11/00
G06Q 10/06
GO6F 1728
GO6F 1727
U.S. CL

CPC

(2006.01)
(2012.01)
(2006.01)
(2006.01)

G06Q 10/063112 (2013.01); GOGF 17/27
(2013.01); GOGF 17/2854 (2013.01); GO6Q
10/06398 (2013.01)

Field of Classification Search

CPC G06Q 10/063112; GO6Q 10/0639;
GO06Q 10/06393; GO6Q 10/06395; GO6Q
10/06398; G06Q 10/101; GOGF 17/27; GOGF
17/2725; GOG6F 17/273; GOGF 17/274; GOGF
17/277;, GOGF 17/2775; GOGF 17/2785;
GOGF 17/2854
.......... 714/26; 705/7.14; 379/265.06, 265.12;
715/751

See application file for complete search history.

USPC

(56) References Cited
U.S. PATENT DOCUMENTS

8,160,324 B2* 4/2012 Fischeretal. 382/128

8,543,582 B1* 9/2013 Granstrom 707/748

8,553,930 B1* 10/2013 MYersccoceceeverevnnennee 382/100

8,594,306 B2* 11/2013 Laredoetal. 379/265.11

8,626,545 B2* 1/2014 VanPeltetal. 705/7.13
2005/0165854 Al 7/2005 Burnett et al.
2006/0224510 Al* 10/2006 Walkeretal. 705/40
2006/0247949 Al* 112006 Shorroshccccccevvveeenenn. 705/2
2008/0114644 Al* 52008 Franketal. 705/14
2009/0198487 Al* 82009 Wongetal.cccceevvernenn. 704/4
2009/0259526 Al* 10/2009 Bechteletal. 705/10
2010/0235408 Al* 9/2010 Nichols etal. 707/805
2011/0137855 Al* 6/2011 Shustef 707/609
2011/0145156 Al* 6/2011 Fengetal. ... 705/301
2011/0173214 Al* 72011 Karimcceoevnene 707/754

(Continued)
OTHER PUBLICATIONS

Bermbach, David et al., An Extendable Toolkit for Managing Quality
of Human-based Electronic Services, Workshops at the Twenty-Fifth
AAAI Conference on Artificial Intelligence, Aug. 2011, AAAI Pub-
lications, Palo Alto, CA, United States.

(Continued)

Primary Examiner — Marc Duncan
(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

A method, computer program product, and system for infor-
mation governance crowd sourcing by, responsive to receiv-
ing a data quality exception identifying one or more data
quality errors in a data store, identifying a performance level
required to correct the data quality errors, selecting, from a
crowd hierarchy, a first one or more crowds meeting the
defined performance level, wherein the crowd hierarchy
ranks the performance of one or more crowds, and routing, by
operation of one or more computer processors, the one or
more data quality errors to the selected crowds for correction.

16 Claims, 7 Drawing Sheets

INTERNAL CROWD
SOURCING PLATFORM
204
ENTERPRISE CROWD WEB U1 210
SERVICE
BUS PARTNER CROWD
202 SOURCING PLATFORM
205
DATA
EXCEPTION EXCEPTION CROWD WEB Ul 210
EMITTER EMITTER
124 124 EXTERNAL CROWD
APPLICATION SOURCING PLATFORM
SERVER 206
201 —{CROWD WEB Ul 210
PERFORMANCE INBOUND | [OUTBOUND | [ANONYMIZER CROWD
MANAGEMENT COMPONENT|| QUEUES || QUEUES || GOMPONENT SOURCING
212 214 216 REPOSITORY
128
CROWD WORKFLOW QUALITY || woRK cosT
HIERARCHY || AppiicATION ||MANAGEMENT | oufcl aTOR
MANAGER A COMPONENT prrd
220 224 CROWD
SOURCING
CROWD SOURCING MANAGER 122 i

132

US 9,092,749 B2

Page 2
(56) References Cited 2013/0311219 ALl* 11/2013 Greencccoceevvvnnnen 705/7.14
2014/0172417 Al* 6/2014 Monketal.cccoovvvennennn. 704/9
U.S. PATENT DOCUMENTS 2014/0195312 Al* 7/2014 Ansel etal. 705/7.42
2014/0324968 Al* 10/2014 D’Amoreet al. 709/204
2011/0208684 Al 8/2011 Dube et al.
2011/0282793 Al* 11/2011 Mercuri ef al.oo..o...... 705/80 OTHER PUBLICATIONS
2011/0313757 Al* 12/2011 Hooveretal. .. . 704/9 . . .
2011/0313801 Al* 12/2011 Biewald et al. . L 705/7.12 Howe, Jeff, The Rise of Crowdsourcing, Wired, Jun. 2006, Issue
2012/0029978 Al* 2/2012 Olding etal. 705/7.42 14.06, <http://www.wired.com/wired/archive/14.06/crowds html>.
2012/0117163 Al* 5/2012 Lesteretal. 709/206 Kern, Robert et al., Managing Quality of Human-Based eServices,
2012/0150579 A1* 6/2012 De Wit ..ccoovvienrinninnnnn. 705/7.14 LNCS: Lecture Notes in Computer Science, 2009, pp. 304-309,
2012/0150820 Al* 6/2012 Sankaranarayanan Springer-Verlag, Berlin, Heidelberg, Germany.
etal. 707/690 Howe, Jeff, Crowdsourcing: Why the Power of the Crowd Is Driving
2012/0151278 AL* 6/2012 Tsantilis 714/48 the Future of Business, 2008, p. 6, Three Rivers Press, New York,
2012/0265573 Al* 10/2012 Van Peltetal. 705/7.14 New York. United States
2013/0055042 Al* 2/2013 Al Za’nounetal. 714/746 d'tl’l fal H 'C tati Svnthesis Lectur Arti-
2013/0159040 Al* 62013 Sarmentaetal. ... 705/7.15 ~ LAW Edith et al, Human Computation (Synthesis Lectures on Arti
2013/0159804 Al* 6/2013 Suzueetal. .. L 714/746 ficial Intelllger_lce and Machine Lear_nlng_), 201_1, p- 4, Morgan &
2013/0231969 Al* 9/2013 Van Pelt et al .. 705/7.13 Claypool Publishers, San Rafael, California, United States.
2013/0253969 Al* 9/2013 Dasetal.ccccoevvrnnen 705/7.13
2013/0275170 A1 10/2013 Kern et al. * cited by examiner

US 9,092,749 B2

Sheet 1 of 7

Jul. 28, 2015

U.S. Patent

} Ol

91l 3IDIA3A LNd1NO vLL FOIAIA LNdNI
Ot JOVIH3ILNI M HOMLIN
8cl
/S310110d eel oz}
ONIDHNOS AHOHVYd3IH vivd
amosd amodo NOILYOI'lddV
801 JDVHOLS 2
Vel H311IN3 NOILd30X3 v1ivd
¢cl "dIODVNVIN DNIOHNOS dMmOdO
0cl NOILVYOITddV
gLl W3 LSAS DNILYHIdO
901 AHOWIN
701 H0OSS3004dd
c0l d31NdINOD

US 9,092,749 B2

Sheet 2 of 7

Jul. 28, 2015

U.S. Patent

AN = |
\\Nm—.}
AHOHVHIIH
ONIOHNOS | _ z2l HIOVNYIA DNIDHNOS AMOHD
amMoso 9¢s INT zﬂm_\,_oo cee mm_%m_mé_\,_
O HOLYINDIVD NOILYDITddV AR
1500 aom | |ININFOVNVAE visimom || A
i ALITVND AMOHD
AHOLISOd3H 312 912 vig 21g
ONIDHNOS ININO4WOD || sanano S3NaNO || LNINOdNOD ININIDVYNYIN
amoss |° HIZINANONY | |annogLno|| annoani JONVINHOSHI
\)]
(\\\
\
[0t2 1N 93m amouo | 102
902 HIAHIS
INHO41Y1d ONIDENOS |« > NOILVOI'lddV
AMOYD TYNHILX3 vzl -
Y3LLINT | H311n3
NOILd3OxX3 | [* NOILdIDXT
01z IN mmimﬂ@og v Iva s
NHO41V1d DNIDHNOS |« > 202
AMOYD HINLIHYd sng
3DIAY3S
3SI4dY3LINT
012 1N 93M AMOHO | S
v02
NHO41V1d DNIDHNOS |« >
aMOHD TYNHILNI

US 9,092,749 B2

Sheet 3 of 7

Jul. 28, 2015

U.S. Patent

oLe |

ONITANVYH
IYNNYIN HO4
ddAL NOILJIOX3
NMONMNN LNOaY
dVYM3LS AdILON

SNOILdFOX3
NMONMNN

Ve Ol4 ~2HE
SITAOTAINT TYNHILXT SNOILd30X3 v1val,
HLIM Q3HVHS 39 LONNYD Y3HLO IT1ANVH
ANV d3HINO3Y SI SSID0V
WILSAS IOHNOS ‘TdAL
28e _ NOILd3OX3 SIHL HOA
dalsoL™ .
ﬁv._\m.vﬁwN LB
ALIALLISNIS zo_ﬁ_m_“_o\xzm_ n_<h<o e
MOTIHO
8LE
d31s Ol 11 SS3ADDV LHODIN
33A0TdINT HINLHYd AILSNHL V
‘q3YINOIY SI SSIDOY WILSAS
30HNOS HONOHL NIAT
29 JAILISNIS ATIVILEVd
daISOL ™
05
JAILISNTS ATIN4 13A31 - ~8¥¢
ALIAILISNIS ADIT0d
83t V1vd ALIAILISNIS NOLLIEOX3 o
d31S Ol iy e V1Vd 31vY0rdnd
d31S OL "3AILISNIS LON
J= 91¢ /s AR
ADI10d NOILd30X3
5 Bﬁwm -— Ewwﬂwmzo < ALIAILISNIS —INOILVZIQUVANY.LS e
o MO3HO Ss3Laay

SNOILd3OX4
NMONXM

ddAlL

NOI1Ld30X3
vivd

ANINGS13d

80¢

90¢g |

MOTIHHOM
NOILd30X3
V.1va d3ooOIdL

4

¥0€ |

3N3ND ANNOANI
NI NOILd30X3
v1va 3AIF03Y

4

zog 7

NOI1Ld30X3
v1iva Lling

US 9,092,749 B2

Sheet 4 of 7

Jul. 28, 2015

U.S. Patent

g¢ 9old4 3IN3NO ANNOALNO OINI| [55IvINoTYo
NOILJ30X3 30¥1d ANV | |Setn W i |
NHO41v1d DNIOHNOS SO
yee /1 admodO LO313S <Zso
3N3NO ANNOBLNO OINI| 55TV INoTTD
» NOILd30X3 30¥1d ANV | =L 0s IV
89¢ [NG SIAL NHO41v1d DNIOHNOS SSOAN]
3N3ND ANNOFLNO OLNI AMOHS HaNLHYd amoyd 10313s =
NOILd30X3 3OV1d ANV HO / GNY JLVAH Tosc 8.8
- NHOILV 1d ONIQHNOS L TV HO4 HOLYIND VO [« o
AMOH0 103135 1S0D YHOM FHOANI 2
0se -~ [} SNOILHOd
S3dAL AMOHD € JAILISNIS LO3104d
V1Vd 3ZINANONY {=—T1v HO4 HOLYINOT¥O[SAR
~ 1S0D YHOM INOANI 29¢
99¢
¥9€ -
3N3ND ANNOGLNO OLNI L 558
< NOILA3OX3 30V1d aNY (ATNO [[FOLYITO VOl
Sd3l1S SAMOHD 31VAIHd) WHO4L1v1d IIOAN
T oLV IVOSS a31¥10IA VIS HO / ONY oge /]_ONIDHNOS AMOHD 103138
gée [G3A3INSSIOOV| 1 q3A13034 LON LINSTH
431soL VEE~ L ¥SE
IN3INO ANNOFLNO OLNI
8z¢ 9ze e :) NOLLd30X3 30v1d any | |S2LVIH VO
R S0 v \o <._mom_uh>._wwMM - NHOH LY 1d DNIOHNOS SSIOAN]
2 OVIS 00 QNag0 d3A1303Y oge /| AMOHD 1037138
11NS3Y vze gee
d3AIZO3Y LINS3Y = ' - 02€
ININOJINOD 3N3NO ANNOFLNO OINI| [95TvAN0TvS
INIWIOVNYN | | NOLLdFOX3 3oVId aNv | |Saatin il
JONVINHOZH3d NI INHOH1V1d DNIOHNOS ISOAN]
V1S HOLINOW GNV QVO'T aMOHD 103138

US 9,092,749 B2

Sheet S of 7

Jul. 28, 2015

U.S. Patent

o€ Old

~ ovE

~ e

SNOILVIOIA
40 S3dAL
d3H10O 3TANVH

- 0vE

MOTIHHOM
HSINIH ANV
JOVM 3LNdINOD

¥2€ 431S OL NHN13Y ANV
NOILDV NOILVIVOS3I HIOOIHL

]

NOILVINHO4NI LININOdINOD
ININITOVNVYIAN AMOHO NO
d3svd NOILVIVOS3 AHOHVYH3IH
AMOHYD TTVOILHIA NHOdH3d

e |

NOILVINHOANI ININOJINOD
ININIOVNYIN AMOHD NO
a3Sv4d NOILVIVOS3 AHOHVH3IH
AMOYO TVINOZIHOH NHO4d3d

&
dagivi3d
JINIL NOILVYTOIA
Sl

- 2¢ce

J

2
da3iviad
ALITYND NOILYIOIA
SI

8ce 9ee
LININOJNOD LNINOJWOD
ININIOVNYN |
< INTWIOVNYIN e
AHOHVYH3IH ALITYND IHOANI
dMOYD 31vadn -
Tocs 82€

U.S. Patent

Jul. 28, 2015

Sheet 6 of 7

US 9,092,749 B2

e

54B

i

W
S 0 W W

i

SE

FIG. 4

U.S. Patent Jul. 28, 2015 Sheet 7 of 7 US 9,092,749 B2

P
//’

/,
/

/
i 4
Sourcmg//

Information
Governance
/

Crowd

S

/

FIG. 5

60

US 9,092,749 B2

1
INFORMATION GOVERNANCE CROWD
SOURCING

BACKGROUND

Embodiments described herein relate generally to the field
of computer software. In particular, embodiments described
herein relate to information governance crowd sourcing.

The quality of information assets is a core concern of most
modern enterprises. In many cases, information quality has
become akey aspect of projects such as data warehousing and
application system consolidation. In other cases, it is the main
driving force for establishing master data management
projects, which aim to create and maintain master data (i.e.,
customer, supplier, product, employee, account data) at its
core. Since these master data entities are critical to all major
business processes, the projects strive to maintain premium
information quality metrics for the entire enterprise life cycle.

Information quality has multiple metrics, which include,
but are not limited to: spelling errors, missing data, duplicate
data, incorrect values, inconsistent format, incomplete for-
mat, syntax violations, violations of integrity constraints, text
formatting, synonyms, and homonyms. An error related to
any of these metrics requires human intervention for a reso-
Iution, yet current methods fail to optimize human resources
for completing these tasks.

SUMMARY

Embodiments provide a method, product, and system for
performing an operation for information governance crowd
sourcing by, responsive to receiving a data quality exception
identifying one or more data quality errors in a data store,
identifying a performance level required to correct the data
quality errors, selecting, from a crowd hierarchy, a first one or
more crowds meeting the defined performance level, wherein
the crowd hierarchy ranks the performance of one or more
crowds, and routing, by operation of one or more computer
processors, the one or more data quality errors to the selected
crowds for correction.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the invention, briefly summa-
rized above, may be had by reference to the appended draw-
ings.

It is to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.

FIG. 1is a block diagram illustrating a system for emitting
exceptions responsive to data quality errors and forwarding
the data quality errors to a crowd in a crowd sourcing envi-
ronment for correction, according to one embodiment
described herein.

FIG. 2 is a block diagram illustrating an application archi-
tecture for emitting exceptions responsive to data quality
errors and forwarding the data quality errors to a crowd in a
crowd sourcing environment for correction, according to one
embodiment described herein.

FIGS. 3A-3C are flow charts illustrating a method for
emitting exceptions responsive to data quality errors and for-
warding data quality errors to a crowd in a crowd sourcing
environment for correction, according to one embodiment
described herein.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 depicts a cloud computing environment according
to one embodiment described herein.

FIG. 5 depicts abstraction model layers according to one
embodiment described herein.

DETAILED DESCRIPTION

Embodiments described herein provide techniques for,
responsive to data quality errors in an information system,
forwarding the data quality errors to crowds in a crowd sourc-
ing environment for correction. In some embodiments, an
application is provided to perform the operations disclosed
herein. In some embodiments, the application detects one or
more data quality errors. In other embodiments, a user may
manually detect and submit data quality errors to the appli-
cation. Responsive to the data quality error, the application
may then identify a performance level required to correct the
data quality errors based on the type of error and the privacy
level of the data. The application may then select one or more
crowds meeting the performance level from a crowd hierar-
chy, wherein the crowd hierarchy ranks the performance of
one or more crowds. The application may then route the data
quality errors to the selected crowds for correction. Finally,
the application may then compute a wage for the crowds for
correcting the one or more data quality errors.

Paid crowd sourcing extends the cloud computing para-
digm to human resources by providing human workforce as a
scalable resource remotely over a web platform. Such a con-
figuration provides a powerful way of outsourcing “micro-
tasks” to large groups of people over the Internet in order to
increase the productivity of business processes. A paid crowd
sourcing platform acts as a broker between requesters who
publish microtasks and workers who complete those tasks in
exchange for compensation. A substantial level of result qual-
ity can be achieved for basic tasks like natural language
annotation, image labeling, and data labeling when introduc-
ing redundancy by passing the same task to multiple workers.
In fact, similar result quality can be achieved as when using
domain experts even with a small level of redundancy. When
leveraging microtasks in a business context, it is crucial to
understand what aspects are influencing the result quality and
how a certain well defined level of result quality can be
achieved for specific scenarios. Furthermore, concrete
approaches are required to actively and efficiently manage the
result quality.

In the following, reference is made to embodiments of the
invention. However, it should be understood that the inven-
tion is not limited to specific described embodiments. Instead,
any combination of the following features and elements,
whether related to different embodiments or not, is contem-
plated to implement and practice the invention. Furthermore,
although embodiments of the invention may achieve advan-
tages over other possible solutions and/or over the prior art,
whether or not a particular advantage is achieved by a given
embodiment is not limiting of the invention. Thus, the fol-
lowing aspects, features, embodiments and advantages are
merely illustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim(s). Likewise, reference to “the invention” shall not
be construed as a generalization of any inventive subject
matter disclosed herein and shall not be considered to be an
element or limitation of the appended claims except where
explicitly recited in a claim(s).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware

US 9,092,749 B2

3

embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer

10

20

25

30

35

40

45

50

55

60

65

4

program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Embodiments of the disclosure may be provided to end
users through a cloud computing infrastructure. Cloud com-
puting generally refers to the provision of scalable computing
resources as a service over a network. More formally, cloud
computing may be defined as a computing capability that
provides an abstraction between the computing resource and
its underlying technical architecture (e.g., servers, storage,
networks), enabling convenient, on-demand network access
to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. Thus, cloud com-
puting allows a user to access virtual computing resources
(e.g., storage, data, applications, and even complete virtual-
ized computing systems) in “the cloud,” without regard for
the underlying physical systems (or locations of those sys-
tems) used to provide the computing resources.

Typically, cloud computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g. an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of the
resources that reside in the cloud at any time, and from any-
where across the Internet. In context of the present disclosure,
auser may access crowd sourcing applications or related data
available in the cloud. For example, the data exception emitter
could execute on a computing system in the cloud and emit
data quality exceptions. In such a case, the crowd sourcing
manager could receive the exception and store details related
to the exception at a storage location in the cloud. Doing so
allows a user to access this information from any computing
system attached to a network connected to the cloud (e.g., the
Internet).

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present disclosure are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

For convenience, the Detailed Description includes the
following definitions which have been derived from the
“Draft NIST Working Definition of Cloud Computing” by

US 9,092,749 B2

5
Peter Mell and Tim Grance, dated Oct. 7, 2009, which is cited
in an IDS filed herewith, and a copy of which is attached
thereto.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-

10

15

20

25

30

35

40

45

50

55

60

6

ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.
A node in a cloud computing network is a computing device,
including, but not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-held
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like. A cloud computing node is capable of being imple-
mented and/or performing any of the functionality set forth
hereinabove.

FIG. 1 is a block diagram illustrating a system 100 for
emitting exceptions responsive to data quality errors and for-
warding the data quality errors to crowds in a crowd sourcing
environment for correction, according to one embodiment
described herein. The system 100 includes a computer 102.
The computer 102 may be connected to other computers via
anetwork 130. In general, the network 130 may be a telecom-
munications network and/or a wide area network (WAN). In
a particular embodiment, the network 130 is the Internet.

The computer 102 generally includes a processor 104 con-
nected via a bus 112 to a memory 106, a network interface
device 110, a storage 108, an input device 114, and an output
device 116. The computer 102 is generally under the control
of an operating system 118. Examples of operating systems
include the UNIX operating system, versions of the Microsoft
Windows operating system, and distributions of the Linux
operating system. (UNIX is a registered trademark of The
Open Group in the United States and other countries.
Microsoft and Windows are trademarks of Microsoft Corpo-
ration in the United States, other countries, or both. Linux is
a registered trademark of Linus Torvalds in the United States,
other countries, or both.) More generally, any operating sys-
tem supporting the functions disclosed herein may be used.
The processor 104 is included to be representative of a single
CPU, multiple CPUs, a single CPU having multiple process-
ing cores, and the like. Similarly, the memory 106 may be a
random access memory. While the memory 106 is shown as a
single entity, it should be understood that the memory 106
may comprise a plurality of modules, and that the memory
106 may exist at multiple levels, from high speed registers

US 9,092,749 B2

7

and caches to lower speed but larger DRAM chips. The net-
work interface device 110 may be any type of network com-
munications device allowing the computer 102 to communi-
cate with other computers via the network 130.

The storage 108 may be a hard disk drive storage device.
Although the storage 108 is shown as a single unit, the storage
108 may be a combination of fixed and/or removable storage
devices, such as fixed disc drives, removable memory cards,
optical storage, flash memory or solid state storage devices
(SSD). The memory 106 and the storage 108 may be part of
one virtual address space spanning multiple primary and sec-
ondary storage devices.

The input device 114 may be any device for providing input
to the computer 102. For example, a keyboard, keypad, light
pen, touch-screen, track-ball, or speech recognition unit,
audio/video player, and the like may be used. The output
device 116 may be any device for providing output to a user of
the computer 102. For example, the output device 116 may be
any conventional display screen or set of speakers, along with
their respective interface cards, i.e., video cards and sound
cards. Although shown separately from the input device 114,
the output device 116 and input device 114 may be combined.
For example, a display screen with an integrated touch-
screen, a display with an integrated keyboard, or a speech
recognition unit combined with a text speech converter may
be used.

As shown, the memory 106 contains an application 120
which is illustrative of the types of applications containing
data which may suffer from data quality errors. Examples of
application 120 include, but are not limited to, an MDM
application, data warehouse application, an extract-trans-
form-load application for integrating data from a source data
system to a target data system, or an enterprise service bus
(ESB) where, for example, lookup values need to be
transcoded from a source data system to a target data system.
It should be obvious to those skilled in the art that application
120 may be an application containing data whose quality is of
importance. As shown, the memory 106 also contains a crowd
sourcing manager 122. In some embodiments, crowd sourc-
ing manager is an application platform, which, responsive to
data quality errors, determines a set of requirements, identi-
fies a crowd capable of correcting the errors, and routes the
errors to the crowd for correction. In some embodiments, the
crowd sourcing manager 122 is also configured to emit excep-
tions responsive to data quality errors. In still other embodi-
ments, the crowd sourcing manager 122 is configured to
receive user defined data quality errors.

As shown, the memory 106 also contains a data exception
emitter 124. Data exception emitter 124 is an application
generally configured to monitor data for violations of pre-
defined data quality standards. In some embodiments, the
data exception emitter 124 is a listener to which the applica-
tion can delegate a data quality processing exception based on
the data quality processing type. Data exception emitter 124
may then pass these data quality exceptions to the inbox of the
crowd sourcing manager 122. For example, data exception
emitter 124 may emit an exception to the crowd sourcing
manager 122 upon receiving notification that addresses in a
database fail to meet standardization requirements. In some
embodiments, the functionality of data exception emitter 124
is integrated into the crowd sourcing manager 122, available
as an application programming interface (API) to external
applications, such as application 120. In other embodiments,
the functionality of data exception emitter 124 is integrated
into applications themselves, such as application 120. As
depicted in FIG. 1, the data exception emitter 124 may run as
a daemon installed on the system 102, which provides APIs

10

15

20

25

30

35

40

45

50

55

60

65

8

which applications such as application 120 can invoke to
consistently surface exceptions. In some embodiments, data
exception emitter 124 provides a user interface (UI) which
allows for the definition of a variety of exception types. Once
the applications consume the data exception emitter 124
APIs, the data exception emitter 124 would then communi-
cate the exceptions to the crowd sourcing manager 122 using
notifications. Communication may be accomplished through
any protocol, including but not limited to the Java message
service (JMS), a web service, or a remote method invocation.
In some embodiments, crowd sourcing manager 122 may be
coded in the Java programming language, which would
enable it to receive exceptions in a well defined XML format.
(Java and all Java-based trademarks and logos are trademarks
or registered trademarks of Oracle and/or its affiliates).

As shown, storage 108 also contains application data 126,
which is general data stored by an application such as appli-
cation 120. Application data 126, although depicted as a
database, may take any form suitable for storing data, such as
atext file, data warehouse, or relational database. Application
data 126 may be owned by multiple entities, may be stored in
several locations of a single computer, or may span across
multiple computers. As shown, storage 108 also contains
crowd sourcing repository 128. The crowd sourcing reposi-
tory 128 stores policies related to the sensitivity of data, for
example, the application data 126. Sensitivity of data may
include different dimensions, such as whether the data itself
can be shared with other people, or whether the source system
containing the data can be accessed by external crowd work-
ers to resolve certain data quality errors. Crowd sourcing
repository 128 may also store policies related to the crowd
itself. Crowd sourcing repository 128 may also provide poli-
cies centered around grouping of data quality exceptions
based on type (e.g., 10 address standardization data quality
exceptions may be the defined as the smallest unit of work
placed on a crowd sourcing platform based on these policies.
As shown, in one embodiment, the crowd sourcing repository
128 may be a database, but it may any form sufficient to store
data. In some embodiments, the policies contained in crowd
sourcing repository 128 may be specified in XML for stream-
lined communication with crowd sourcing manager 122.

As shown, the storage 108 of computer 102 also contains a
crowd hierarchy 132, used to rank crowds available to correct
data quality exceptions. Generally speaking, a hierarchy is an
ordered set indicating the crowd’s (or individual’s) level in
the hierarchy. A hierarchy may link entities in a vertical as
well as a horizontal manner. Therefore, those entities verti-
cally higher are “superior” to those beneath them in the hier-
archy, while an entity is considered “equal” to those entities it
is linked to horizontally. In some embodiments, nodes in
crowd hierarchy 132 represent crowds; in other embodi-
ments, nodes in crowd hierarchy 132 represent individual
workers. In some embodiments where crowd hierarchy 132
represents individual workers, the hierarchy may be replaced
by a graph to better capture certain attributes of the workers.
Although crowd hierarchy 132 is shown as a database, any
suitable data structure capable of maintaining a hierarchy
may be implemented, and the particular format implemented
should not be considered limiting of the disclosure.

The particular configuration shown in FIG. 1 should not be
considered limiting of the disclosure. Any possible configu-
ration of the items in memory 106 and storage 108 are con-
templated. For example, application 120 and crowd sourcing
manager 122 may be on the same or different computers;
application data 126, crowd sourcing repository 128, and
crowd hierarchy 132 may be on the same computer or difter-

US 9,092,749 B2

9

ent computers, and may be onthe same or difterent computers
as application 120 and crowd sourcing manager 122.

FIG. 2 is a block diagram illustrating application architec-
ture 200 for emitting exceptions responsive to data quality
errors and forwarding the data quality errors to a crowd in a
crowd sourcing environment for correction, according to one
embodiment described herein. As shown, FIG. 2 depicts three
types of crowd sourcing platforms: external crowd sourcing
platform 204, partner crowd sourcing platform 205, and inter-
nal crowd sourcing platform 206. As shown, each of the three
crowd sourcing platforms has a crowd web user interface (UI)
210 which allows for communication between the enterprise
hosting the application architecture 200 and the crowd
accessing the application architecture 200. For example,
crowd web Ul 210 may be accessed by crowd members to
retrieve work assignments as well as post completed assign-
ments. Although shown as a single entity, crowd sourcing
platforms 204-206 may each comprise multiple distinct
crowds. The crowd sourcing platforms 204-206 vary based on
the organization staffing the crowd and the composition of its
crowd members. Internal crowd sourcing platform 204 is
generally a crowd “internal” to the enterprise having the data
quality errors needing correction. Thus, crowd members in
the internal crowd sourcing platform 204 are also employees
of the enterprise. For example, the internal crowd sourcing
platform 204 could comprise enterprise employees in a call
center or service center owned and operated by the enterprise,
and the crowd members are therefore employees of the enter-
prise. In such a scenario, privacy concerns are minimized, as
sensitive data would be viewed by employees of the enter-
prise under an internal privacy policy. Partner crowd sourcing
platform 205 is a crowd sourcing platform hosted by an
external company, but does not have general accessibility.
This generally implies that the partner enterprise offering
partner crowd sourcing platform 205 agrees to data security
and privacy policies in an agreement with the enterprise seek-
ing to utilize partner crowd sourcing platform 205. Further-
more, only employees the partner enterprise has under con-
tract can work on the crowd sourcing tasks. Generally,
external crowd sourcing platform 206 is a crowd external to
the enterprise; neither the crowd nor its employees are related
to the enterprise. External crowd sourcing platform 206 is
available for use by the general public. Care must be taken
when transmitting assignments to an external crowd, as sen-
sitive data may be viewed, which may result in breaching
privacy agreements, laws, and other regulations. Examples of
external crowd sourcing platform 206 include Mechanical
Turk by Amazon, Inc. It should be noted that each crowd may
not comprise distinct sets of individuals. For example, an
employee of a corporation might belong to its internal crowd,
but the employee may also register for a public crowd which
is open to all people.

As shown, the application architecture 200 also has enter-
prise service bus (ESB) 202. Enterprise service bus 202 is a
general purpose ESB, which is a model used for designing
and implementing the interaction and communication
between mutually interacting software applications in a ser-
vice oriented architecture. The main duties of an ESB are to
monitor and control routing of message exchange between
services, resolve contention between communicating service
components, control deployment and versioning of services,
marshal use of redundant services, and cater for commonly
needed commodity services like event handling and event
choreography, data transformation and mapping, message
and event queuing and sequencing, security or exception
handling, protocol conversion and enforcing proper quality of
communication services. ESB 202, in some embodiments,

25

40

45

10

therefore serves as an intermediary for communications
between application server 201, crowd sourcing manager
122, and crowd sourcing platforms 204-206. Application
server 201 is a server on which applications such as applica-
tion 120 are executed. ESB 202 is also shown as having an
instance of data exception emitter 124, according to one
embodiment described above. Data exception emitter 124 is
also shown in application server 201. This configuration
therefore depicts an embodiment where the data exception
emitter 124 is installed as a daemon on the systems where the
application 120 and ESB 202 are installed. In the case of the
ESB 202, the data exception emitter 124 may emit ESB
exceptions, such as a data type exception when converting a
message from a source to target application.

As shown, the application architecture 200 also contains
crowd sourcing manager 122, according to one embodiment
disclosed herein. Generally, crowd sourcing manager 122
performs several important functions responsive to receiving
an exception from data exception emitter 124. In the embodi-
ment depicted in FIG. 2, crowd sourcing manager 122 con-
tains components which perform specialized functions,
including performance management component 212,
inbound queues 214, outbound queues 216, anonymizer com-
ponent 218, crowd hierarchy manager 220, workflow appli-
cation 222, quality management component 224, and work
cost calculator 226. The inbound queues 214 and outbound
queues 216 are storage queues for data quality exceptions. In
some embodiments, multiple queues may be designated for
each type of data quality exception classification. The
inbound queues 214 receive data quality exception messages
from the data quality exception emitter 124, storing the
exception for later processing within crowd sourcing man-
ager 122. The outbound queues 216 send work packages to
the appropriate crowd sourcing platforms. Based on the poli-
cies enforced by the worktlow application 222, the inbound
messages are picked up and either sent individually or com-
bined in “work packages” to appropriate crowd sourcing plat-
forms 204-206 based on data privacy and data security poli-
cies. In some embodiments, the outbound queues 216 persist
a local copy of the transmitted work packages for tracking
purposes if a result (or multiple results if the task is sent
multiple times to different crowd workers) is returned. In
some embodiments, at the time the task sent via outbound
queue 216, a timer is started to determine whether results are
being returned within the maximum processing time. Work-
flow application 222 is an application generally configured to
contain defined workflows for processing the data quality
exceptions in inbound queues 214. Based on the policies in
crowd sourcing repository 128, workflow application 222
routes the data quality exceptions in inbound queues 214 to
internal, partner, or external crowd sourcing platforms 204-
206. Workflow application 222 also monitors the perfor-
mance of these crowd sourcing platforms as well as the accu-
racy of their work.

Quality management component 224 assesses the quality
of'work assignments completed by individual crowd workers
as well as groups of workers as a whole. Quality management
component 224 is invoked by workflow application 222 as
needed to update the crowd hierarchies in crowd hierarchy
component 220. In such instances, quality management com-
ponent 224 may return a level of work quality performed by a
crowd, or individuals in a crowd. The level of work quality
may be an aggregate of all tasks completed, or based on
specific tasks completed.

Anonymizer component 218 provides the ability to anony-
mize sensitive (private) data. In some embodiments, anony-
mizer component 218 can be invoked to mask data where

US 9,092,749 B2

11

appropriate to meet data security and data privacy policies
without preventing the ability of crowd workers to work on
data to complete data quality errors. Data masking includes
replacing real data values with realistic values generated by a
masking algorithm. Any suitable masking algorithm may be
integrated in anonymizer component 218. In some cases, data
cannot be anonymized, and therefore cannot be sent to an
external crowd sourcing platform 206.

Crowd hierarchy manager 220 creates and manages hier-
archies of different worker communities within a crowd as
well as across crowds. In some embodiments, crowd hierar-
chy manager 220 also creates and manages hierarchies of
individual workers. FIG. 2 depicts crowd hierarchy 132, an
exemplary hierarchy. A hierarchy created and managed by
crowd hierarchy manager 220 may be useful in information
governance scenarios where, based on the sensitivity of the
data involved, multiple levels of crowd sourcing are needed.
In such a scenario, users/stewards at higher levels in the
hierarchy perform necessary validation on the responses gen-
erated by a lower-level crowd system. For example, an inter-
nal set of data stewards at a higher level in the hierarchy may
validate spelling corrections for certain business terms com-
pleted by an external crowd.

In creating crowd hierarchy 132 or adding new crowds to
crowd hierarchy 132, crowd sourcing manager 220 may take
any number of approaches. Crowd sourcing manager 220
may assign an initial score to all crowds, whereby a newly
created crowd would have a single level of nodes, resulting in
ahierarchy of equally ranked crowds. In other embodiments,
crowd sourcing manager 220 may randomly arrange the
crowds in crowd hierarchy 132. Generally, crowd sourcing
manager 220 may take any suitable steps to create the crowd
hierarchy 132 or add new crowds to the crowd hierarchy 132.

In one embodiment, crowd hierarchy 132 is a hierarchy of
different crowd systems, where crowd hierarchy manager 220
ranks each crowd system in the crowd hierarchy 132 and
assigns each crowd system a cumulative weight. The weight
associated with a crowd indicates the overall authority of the
crowd system in performing the tasks under the current
assignment as well as in evaluating the tasks completed by
other crowd systems in the crowd sourcing hierarchy. In some
embodiments, crowd hierarchy manager 220 computes a set
of' weights corresponding to various relevant attributes of the
crowd, such as domain of expertise, languages spoken, geo-
graphic location, etc. In some embodiments, crowd hierarchy
manager 220 may compute a weight range, representing
minimum and maximum performance thresholds for the
crowd. Crowd hierarchy manager 220 may also update these
weights via internal feedback mechanisms. In some embodi-
ments, crowd sourcing manager 220 may compute weights
based on the correctness of actual work completed. In some
embodiments, crowd sourcing manager 220 may also use
confidence levels and position in the crowd hierarchy 132 to
influence the computed weights.

For the purpose of computing weights, in embodiments
where crowd systems are ranked by crowd hierarchy manager
220, acrowd system may be defined as aset S of people, {s_i}
assigned to complete a crowd sourced task. A crowd profile
may be defined as a tuple of the form {S, w}, where
w € (oo,) is the profile weight associated with crowd
system S. A crowd sourcing hierarchy, C={{S_i, w_i}} is
defined as an ordered set of crowd systems S_i and associated
weights w_i, where i indicates the level in the hierarchy. For
example, in an exemplary hierarchy, {{S_1, w_1}, {S_2,
w_2},...},S_1lies at the bottom of the hierarchy, S_ 2 at
the next level in the hierarchy, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

12

Based on these definitions, crowd sourcing manager 220
may compute and update the weights as follows. Let t be a
task assigned to a crowd system, S_j. Further, let f(t) denote
expected output of the task t, as decided by a crowd system,
S_i, where i>j (implying S_i is more authoritative than S_j
and thus, has the ability to ‘judge’ the work done by S_j). Let
p denote the probability with which S_i believes that the
outcome of task t should be {(t). This probability captures
difference in opinions among the members of the crowd sys-
tem, S_i. Lastly, let g(t) denote the outcome of the task t, as
computed by the crowd system S_j, with probability q. This
probability captures the difference in opinions among the
members of the crowd system, S_j.

Finally, assume there is a deterministic function J(f{(t),
g(t)) € [-y,y] that is able to compare f(t) and g(t) and return a
numeric value based on their similarity. For example, iftis a
task to correct typos, then J can be a function comparing word
distances. For example, if the typo is “Interrelation Business
Machine”, f(t) is “International Business Machines™ and g(t)
is “International Business Machines”, then J would return y.
However, if g(t) is “Interrelational Business Machines”, then
Jwould return a value in (0, y). If g(t) is “Blue Jeans™, J would
return a value closer to -y. Given this generic scenario, the
following feedback relationships for weight computation by
crowd hierarchy manager 220 may be defined.

Assuming a predefined threshold T, T € R, in the case where
p is much greater than q (e.g., p-q>=1T), the crowd hierarchy
manager 220 uses the formula to compute the weight
w_j=w_j+(p-q)*J (f(1), g(t))-K, where K is a constant. This
scenario indicates that a more authoritative crowd system is
very confident about f(t), whereas the less authoritative crowd
system has a low confidence level of g(t). By using this
formula, S_j receives a positive weight increment if J evalu-
ates to a positive value (since p—q>0), however, S_j is also
penalized for the overall low confidence even if the overall
result of the task is correct, by deducting the adjustable con-
stant, K.

In cases where p is much less than q, (e.g., qg—p>=T), then
crowd hierarchy manager 220 uses the formula to compute
the weight w_j=w_j+q*J] (f(t), g(t)). This represents a sce-
nario where a more authoritative crowd system is less confi-
dent about f(t), whereas a less authoritative crowd system has
high confidence on g(t). Thus, using the formula, crowd hier-
archy manager 220 simply rates S_j based on their perfor-
mance, and no penalties are taken. However, the crowd hier-
archy manager 220 may introduce a subtlety here, since p is
much less than q (i.e. a large number of less authoritative
people agree on an outcome, while more authoritative people
have considerable disagreement over the expected outcome).
In these cases, crowd hierarchy manager 220 performs the
following steps. First, crowd sourcing manager 220 deter-
mines if there is any crowd system S_k that has more author-
ity (is higher up the hierarchy) than S_i, and requests feed-
back on the expected outcome of task t. The expected
outcome of S_k can be y(t). If I(y(1), f(t))>J(y(1), g(t)), then
crowd hierarchy manager 220 does nothing. However, if I(y
(), TO))<I(y(1), g(1)), then the crowd hierarchy manager 220
imposes upon S_i some weight deduction because it was low
on confidence and came up with a wrong expectation of the
task outcome while being higher up the hierarchy. Thus, the
crowd hierarchy manager 220 recomputes the weight of S_i
as follows: w_i=w_i-K*i, where K is a constant, meaning
that the penalty for performing poorly is directly proportional
to the level a crowd system is at. In addition, the crowd
hierarchy manager 220 does not penalize S_j for its answer;
therefore the crowd hierarchy manager 220 updates the
weight for S_j using the following equation: w_j=w_j+q*J

US 9,092,749 B2

13

(y(©), g()+K, where K is a constant awarded to S_j for
performing significantly above set expectations.

In the remaining permutations of p and q, the crowd hier-
archy manager 220 computes the weight of S_j using the
following equation: w_j=w_j+lp—qI*J (f(t), g(t)). Thus, the
crowd hierarchy manager 220 simply takes the modulo of p
and q so that S_j gets a reward if J(f(t),g(t))>0 and a punish-
ment if J(f{t),g(1))<0.

As described above, in another embodiment, the crowd
sourcing manager 220 may compute a hierarchy with a finer
granularity, where each node along the hierarchy represents
an individual worker instead of the entire crowd. In such an
embodiment, weights assigned reflect the quality of results
delivered by each individual worker. In some embodiments, a
graph may be implemented in place of a hierarchy, which
represents non-trivial relationships between individuals
where it might not be possible to align the set of individuals
along a simple hierarchy. For example, one worker may be
exceptional in certain domains of expertise, yet have poor
language skills. Another worker may have poorer knowledge
in the domain of expertise, yet possess superior language
skills. By encoding this varying knowledge in a consumable
form in a graph, the crowd sourcing manager 220 is enabled
to make intelligent suggestions for routing assignments based
on the specific requirements of the task. Crowd hierarchy
manager 220 may use the formulas described above in com-
puting weights to be assigned in such an embodiment.

In still another embodiment, the crowd hierarchy manager
220 may compute a hierarchy of worker pools, where each
node along the hierarchy is representative of overlapping
subsets across different crowd sets. For example, the crowd
hierarchy manager 220 may compute a worker pool compris-
ing the top five (based on individual weights) domain experts
from a set of 100 domain experts and the top five language
specialists from a different set, thus forming a special worker
pool comprising workers having domain expertise and spe-
cial language skills.

Returning to FIG. 2, also depicted is performance manage-
ment component 212, which is used to escalate tasks if the
service level agreement (SLA) for a crowd sourcing task is
violated. Performance management component 212 also
monitors the timer set when work is placed in the outbound
queue. Violations of the SLA may be related to the accuracy
of'work completed, or to the rate at which work is completed,
such that the work may not be completed within the specified
amount of time. In embodiments where the violation is accu-
racy related, for example, if a task is given to a group of n
crowd workers, and the results for the first x assignments
(where x<n) do not meet a specified accuracy threshold, per-
formance management component 212 may escalate the
remaining tasks to crowd workers whose weights related to
quality of work are higher, so that the expected average accu-
racy threshold may still be met. By making such a decision,
the performance management component 212 ensures that
crowd workers not meeting the minimal accuracy record are
removed from the task. In some embodiments, the perfor-
mance management component 212 ensures that a worker
can no longer see and work on a task. In embodiments where
the violation is time related, for example, a crowd sourcing
task is normally completed in 5 days, and only 1 day is
remaining for the task to be completed, performance manage-
ment component 212 may escalate the task to more crowd
workers, or may assign the task to workers whose weights
related to productivity are greater, such that the task is com-
pleted on time.

Also shown in FIG. 2 is work cost calculator 226. In some
embodiments, work cost calculator 226 is invoked by work-

10

20

25

30

40

45

50

55

60

65

14

flow application 220 to compute the cost for different task
deployment strategies to different crowds. In some embodi-
ments, performance management component 212 may
invoke work cost calculator 226 upon escalating a task to
determine the costs of introducing additional workers, or
escalating to workers having higher quality or productivity
weights. In some embodiments, work cost calculator 226 may
be invoked to compute the estimated cost of correcting a set of
data quality errors. The cost of correcting the data quality
errors may be based on any number of variables, including,
but not limited to, the type of data quality errors, the number
of data quality errors, the skill level required to correct the
data quality errors, the number of individuals required to
correct the data quality errors, the amount of time required to
correct the data quality errors, the amount of time within
which the data quality errors must be corrected, and whether
corrections completed by a crowd must be verified by a crowd
higher in the crowd hierarchy 132. For example, some tasks,
like reconciling duplicate data records might be initially sent
to only one crowd worker and incrementally be posted more
often until a certain quality threshold is reached. To achieve
such a result, mechanisms such as “dynamic majority vote”
(DMV) can be implemented. Alternatively, a task can be
posted multiple times and a mechanism computing a statisti-
cal result can be used to make a decision on the final result.
For example, in the case of duplicate records, the statistic on
which value has been identified by the crowd worker to be
correct can be determined, or the value taken by most of the
crowd workers is considered to be the correct one. Methods
such as these allow for grading the work of the crowd worker;
the closer the result of an individual crowd worker to the final
result, the better his work performance indicator is. Aggre-
gating this data for crowd workers from the same platform can
be used to determine the equality of work done on a certain
crowd platform. If an individual worker overachieves or
underachieves comparative to the average level of correctness
delivered by the workers within his crowd system, he might
be moved to a more (or less) authoritative crowd system
(which has comparable attributes except for the average cor-
rectness delivered by its workers). In other embodiments,
work cost calculator 226 may compute wages based on crowd
profiles. In some embodiments, work cost calculator 226
defines a wage function for a crowd system S_i for a task t as:
f(w_i, t)=r*(w_i+J (f(t), g(t))), where r is the base rate, which
is set by the enterprise’s cost spending expectations, market
standards, or any suitable method. By implementing this
equation, work cost calculator 226 captures three important
concepts. First, work cost calculator 226 pays a crowd system
a base wage (captured by r*w_i) irrespective of the task
outcome expectation. Second, work cost calculator 226 mar-
ginally penalizes or rewards a crowd system based on the
outcome of the task (captured by r*J(f(t),(g(1)))). Finally,
work cost calculator 226 decides a crowd system’s base wage
based on their previous work history and authority on the
subject (captured by multiplicative weight w_i).

FIGS. 3A-3C are flow charts illustrating a method 300 for
emitting a data quality exception responsive to data quality
errors and forwarding the data quality errors to a crowd in a
crowd sourcing environment for correction, according to one
embodiment described herein. The method begins at step 302,
where data exception emitter 124 emits a data exception upon
being delegated a data quality error. In other embodiments,
the data exception may be manually specified by a user who
detects the data quality error. For example, application 120
may detect a series of spelling errors contained in application
data 126, and send a data quality processing exception to data
exception emitter 124 in response. In some embodiments, the

US 9,092,749 B2

15

data exception emitter 124 may emit the data exception to
crowd sourcing manager 122. In some embodiments, the data
exception emitter emits the data exception to enterprise ser-
vice bus 202, which forwards the data exception to crowd
sourcing manager 122. At step 304, crowd sourcing manager
122 receives the data exception in the inbound queue 214.
Upon receiving the data exception in inbound queue 214,
crowd sourcing manager 122 invokes workflow application
222 to trigger a data exception workflow at step 306, as
defined by the policies in crowd sourcing repository 128. At
step 308, crowd sourcing manager 122 determines the data
exception type, and determines whether the exception is
known or unknown. If the exception is unknown (i.e., has not
been defined), the crowd sourcing manager 122 proceeds to
step 310, where crowd sourcing manager 122 notifies a stew-
ard that an unknown exception has been detected, and that
user input is needed to define the exception. If the data excep-
tion type is known, the crowd sourcing manager 122 deter-
mines its type, and proceeds accordingly. As examples, three
different exception types are provided, and a fourth catchall
has been provided. If, for example, crowd sourcing manager
122 determines the exception type is none of the three specific
examples listed in elements 314, 348, or 372, crowd sourcing
manager 122 proceeds to step 312 to handle other data excep-
tions.

In one embodiment, at step 314, crowd sourcing manager
122 may determine that the data quality exception is an
“address standardization exception.” For example, the data
exception may be related to invalid zip code or state code
formats. Upon determining an address standardization excep-
tion has been emitted, the crowd sourcing manager 122 pro-
ceeds to step 316, where the crowd sourcing manager 122
checks the sensitivity policy related to address standardiza-
tion exceptions for the enterprise, as defined in crowd sourc-
ing repository 128. Upon referencing the crowd sourcing
repository, the crowd sourcing manager 122 may determine
that address standardization exceptions are not sensitive
exceptions, and therefore privacy is not a concern. Therefore,
any of the three crowd sourcing platforms 204-206 may be
sent the address standardization exceptions. The crowd
sourcing manager 122 then proceeds to step 318, where a cost
policy contained in crowd sourcing repository 128 is checked
to determine the enterprises’ planned budget for correcting
address standardization exceptions. The crowd sourcing
manager 122 then proceeds to step 320, depicted in FIG. 3B,
where the crowd sourcing manager 122 invokes the work cost
calculator 226. At step 320, work cost calculator 226 gener-
ates an estimated cost of completing the corrections based on
sending the tasks to all available crowd sourcing options. At
step 322, the crowd sourcing manager 122 selects a crowd
sourcing platform and places the address standardization task
into the appropriate outbound queue 216. The crowd sourcing
manager 122 also creates the appropriate outbound queue
216, if necessary. As stated above, a timer is also started by
workflow application 222 upon placing the work package in
the outbound queue 216. The crowd sourcing manager 122
selects the crowd sourcing platform based on the information
it has gathered by checking the cost policy, sensitivity policy,
and invoking work cost calculator 226 to find the most cost
effective solution which will complete the task without vio-
lating any policies. For example, the crowd sourcing manager
122 may determine that it is more cost effective to route the
task to an internal crowd, upon determining that the internal
crowd has available resources to take on the task, thereby
optimizing the productivity of the internal crowd. The crowd
sourcing manager 122 then proceeds to step 324, where it

5

10

15

20

25

30

35

40

45

50

55

60

65

16

loads the service level agreement into the performance man-
agement component 212 for monitoring.

Before moving to step 324, which is common to all types of
data quality errors, we may move to step 348, depicted in FIG.
3 A, where the crowd sourcing manager 122 determines that
the data exception type is a “duplicate data exception.” A
duplicate data exception may be triggered as the result of
having duplicate data records in the same relational database,
or redundancy across relational databases across multiple
systems. Regardless of the type of duplicate data exception,
human intervention is necessary to remove the duplicate
entries. The crowd sourcing manager 122 thus moves to step
350, where the crowd sourcing manager 122 checks the sen-
sitivity policy related to duplicate data exceptions for the
enterprise, as defined in crowd sourcing repository 128. The
crowd sourcing manager 122, then, at step 352 determines the
data sensitivity level based on the sensitivity policy. If the data
is not sensitive, the crowd sourcing manager 122 proceeds to
step 354. If the data is fully sensitive, the crowd sourcing
manager 122 proceeds to step 358. If the data is partially
sensitive, the crowd sourcing manager 122 proceeds to step
362. At step 354, depicted in FIG. 3B, the crowd sourcing
manager 122 invokes work cost calculator 226. At step 354,
work cost calculator 226 generates an estimated cost of com-
pleting the corrections based on sending the tasks to all avail-
able crowd sourcing options, including internal, external or
partner crowd sourcing platforms 204-206. At step 356,
described in more detail above with reference to step 322, the
crowd sourcing manager 122 selects a crowd sourcing plat-
form and places the duplicate data exception assignment into
the appropriate outbound queue 216. The crowd sourcing
manager 122 then proceeds to step 324, where it loads the
service level agreement into the performance management
component 212 for monitoring.

Returning to step 358, depicted in FIG. 3B, the crowd
sourcing manager 122, upon determining that the data sensi-
tivity level is fully sensitive, invokes the work cost calculator
226 to compute the cost of having the work completed by an
internal crowd sourcing platform 206. An internal crowd
sourcing platform is required to prevent a violation of data
privacy policies, laws, and regulations. At step 360, described
in detail above with reference to step 322, the crowd sourcing
manager 122 selects an internal crowd sourcing platform 205
and places the duplicate data exception assignment into the
appropriate outbound queue 216. The crowd sourcing man-
ager 122 then proceeds to step 324, where it loads the service
level agreement into the performance management compo-
nent 212 for monitoring.

Returning to step 362, depicted in FIG. 3B, the crowd
sourcing manager 122, upon determining that the data sensi-
tivity level is partially sensitive, determines whether anony-
mizer component 218 can mask the data to protect sensitive
portions. If the crowd sourcing manager 122 determines that
the anonymizer component 218 can protect sensitive data, the
method proceeds to step 364; otherwise, the method proceeds
to step 368. At step 364, the crowd sourcing manager 122
invokes the work cost calculator 226 to generate an estimated
cost of completing the corrections based on sending the tasks
to all available crowd sourcing options, including internal,
external or partner crowd sourcing platforms 204-206. At step
366, the crowd sourcing manager 122 invokes the anonymizer
component 218 to mask the sensitive data, as described
above. The crowd sourcing manager 122 then proceeds to
step 370. Returning to step 368, the crowd sourcing manager
122, upon determining that the anonymizer component 218
cannot protect sensitive data, invokes the work cost calculator
226 to generate an estimated cost of completing the correc-

US 9,092,749 B2

17

tions based on sending the tasks to internal crowd platforms
204 and partner crowd sourcing platforms 205. Upon calcu-
lating the work cost, the method proceeds to step 370. At step
370, described in more detail above with reference to step
322, the crowd sourcing manager 122 identifies the selected
crowd sourcing platform and places the duplicate data excep-
tion assignment into the appropriate outbound queue 216.
The crowd sourcing manager 122 then proceeds to step 324,
where it loads the service level agreement into the perfor-
mance management component 212 for monitoring.

Before moving to step 324, which is common to all types of
data quality errors, we may moveto step 372, depicted in FIG.
3 A, where the crowd sourcing manager 122 determines that
the data exception type is a “primary key/foreign key data
exception.” Such an exception may be triggered in response to
alack ofreferential integrity in a database. For example, in the
database of a bank, all accounts have to be attached to a
customer. Therefore, the customer table contains a primary
key (e.g. an ID) which is referenced by a foreign key in the
account table. If for any reason, this foreign key does not
match any of the primary keys in the customer table, manual
effort is typically required to sort out what went wrong. Upon
determining that the data exception type is a primary key/
foreign key data exception, the crowd sourcing manager 122
proceeds to step 374, where the crowd sourcing manager 122
checks the sensitivity policy related to primary key/foreign
key data exceptions for the enterprise, as defined in crowd
sourcing repository 128. The crowd sourcing manager 122,
then, at step 376 determines the data sensitivity level based on
the sensitivity policy. Because primary key/foreign key
exceptions arise in the context of a relational database, access
to the database may be needed to correct the exceptions.
Therefore, the policy requires at least some degree of sensi-
tivity measures. In some cases, even though source access is
required, a trusted partner employee may access the source. If
the exception is only concerned with sensitivity of the data
itself, then the crowd sourcing manager proceeds to step 378.
If correction of the exception requires access to the database,
then the sensitivity policy restricts the crowd sourcing man-
ager 122 to the selection of an internal crowd sourcing plat-
form 204. In other words, in most cases, an employee of the
enterprise owning the database must complete the correc-
tions. In such an event, the crowd sourcing manager proceeds
to step 382.

At steps 378 and 382, depicted in FIG. 3B, the crowd
sourcing manager 122 invokes the work cost calculator 226.
At step 378, the work cost calculator 226 computes the cost of
completion on any available internal crowd sourcing platform
204 or partner crowd sourcing platform 205. The method then
proceeds to step 380. At step 382, the work cost calculator 226
computes the cost of completion on any available internal
crowd sourcing platform 204. The method then proceeds to
step 384, described in more detail above with reference to step
322, where the crowd sourcing manager 122 identifies the
selected crowd sourcing platform and places the primary/key
foreign key data exception assignment into the appropriate
outbound queue 216. The crowd sourcing manager 122 then
proceeds to step 324, where it loads the service level agree-
ment into the performance management component 212 for
monitoring.

At step 324, performance management component 212
begins monitoring the task. At step 326, performance man-
agement component 212 determines whether the SLA agree-
ment has been violated, and monitors the rate and quality of
completed assignments returned by the selected crowd. If, at
step 326, performance management component 212 deter-
mines that results have not been received, or the SLA has been

10

25

40

45

55

60

18

violated, it returns to step 324 for continuous monitoring. If,
at step 326, performance management component 212 deter-
mines that a violation has occurred, the performance manage-
ment component 212 proceeds to step 334 in order to assess
the types of escalation steps it must take in response. At step
336, depicted in FIG. 3C, the performance management com-
ponent 212 determines whether the violation is accuracy
related. As described above, an accuracy violation indicates
that results being received are not of a sufficient accuracy, and
the task needs to be escalated to a crowd having a higher
weight related to skill level. If the violation is accuracy
related, the method proceeds to step 342, where the perfor-
mance management component 212 performs ‘“vertical”
crowd hierarchy escalation, where a crowd with a higher rank
in the hierarchy related to skill level is selected to complete
the tasks, which are rerouted to the new crowd for completion.
Upon completing the escalation, the method proceeds to step
346. If the violation is not accuracy related, the performance
management component 212 proceeds to step 338 where the
performance management component 212 determines
whether the violation is time related. If the violation is time
related, at step 344, the performance management component
212 performs “horizontal” crowd hierarchy escalation to
assign future tasks to more crowd workers at the same skill
level to ensure that the overall number of tasks is completed
ontime. In other embodiments, the performance management
component 212 may perform a “vertical” escalation at this
step to reroute the tasks to members of a crowd having a
higher rank for productivity. Upon completing the escalation,
the method proceeds to step 346. If the violation is not time
related, the method proceeds to step 340, where it handles all
other types of violations. These violations may include SLA
violations, where sensitive data was viewed or accessed by
unauthorized crowd workers, in which case the performance
management component 212 would reroute the assignment to
crowd workers whose use of the data would not violate the
SLA. At step 346, the escalation action is triggered and the
method returns to step 324, depicted in FIG. 3B, to continue
monitoring the process. If more assignments need to be
passed to workers, the method returns to step 322.

Consider the following example being an exemplary data
model of a table containing customer information. The table
has the attributes (only a subset shown) as shown in Table 1.
If the row shown below is send to a tool doing address stan-
dardization, the standardization with the default rule set will
fail for the field Street. Modern tools are able to parse a string
like “Main Street 17 and identify, that the token “Main” is a
name, “Street” is an indicator of the type of street (e.g.
“Street” vs. “Avenue”) and the token “1” would be the house
number (since it’s an integer) and re-assign the number “1” to
the HOUSENUMBER field. Now in our example we have the
string “Main Street 1 001-456-9435278" where the tool with
its default rules wouldn’t know that the token “001-456-
9435278 means since it does not have arule for that (it’s easy
for us humans to spot that someone entered the data errone-
ously and, this is likely the phone number and should be
placed in the PHONENUMBER column). In the context of
the current disclosure, the data exception emitter 124 would
emit an address standardization exception to the crowd sourc-
ing manager 122 and received in the inbound queue 214
triggering a workflow there. Since the data exception emitter
124 emitted the exception for address standardization with a
registered exception type in step 308 it would be determined
that an Address Standardization Exception 314 must be pro-
cessed. Since in our example, only the customer name in
conjunction with the SSN is considered sensitive, the check
policy step 316 would indicate that this exception can be

US 9,092,749 B2

19

routed to any crowd platform since no sensitive information is
involved. In step 318 and 320 a cost check is made to see if the
data exception maybe submitted to a crowd platform aligned
with the company cost policies. So for example, the company
might have a contract with an external, hybrid crowd sourcing
company where the fee per address standardization exception
would be 0.8 dollar/exception and an internal crowd sourcing
platforms with an operational cost of 0.75 dollar/exception.
However, since the workload management component for the
internal crowd indicates that it is busy, it is decided to be sent
to the external crowd. Since address standardization is per the
configuration of our example considered to be a simple task to
be done, it is posted only once and sent to the external hybrid
crowd sourcing provider. This crowd sourcing provider
(crowd system) may be part of a larger crowd-sourcing hier-
archy maintained by the internal crowd-sourcing platform or
by the external crowd sourcing company. For simplicity,
assume there are 2 crowd systems in the hierarchy, viz., a set
of authoritative (but expensive) domain experts in address
standardization (within the company) called S_i and the
crowd system comprising of people who work at the external
company, called S_j. Also assume the weight of external
crowd system is 4 and that of the internal system is 10. So, in
effect, we have the following hierarchy: {{S_j, 4}, {S_i,
10}}. Assume that the crowd workers in S_j incorrectly assert
that “001-456-9435278” is some combination of “house
number and zip code” and classify it accordingly. In this case,
assume that S_iknows with probability=1 (knows for certain)
that the correct categorization must be “phone number” and
nothing else. Also, workers in S_j are split in their opinion and
although majority vote was “house number and zip code”, the
overall probability was 0.6 (6 out of 10 people were in favor).
The threshold T=0.5. In this scenario, the crowd hierarchy
manager 220 computes the function J (., .), which in this case
simply validates the classification that is being done by the
crowd workers and returns a value, e.g., —1. Next, the crowd
sourcing manager 122 invokes the crowd hierarchy manager
220, which reduces the weight of the crowd system S_j,
w_j=4+11-0.61*(-1)=3.6 (penalty for incorrectness). Finally,
the wage is computed for a fixed rate r=50 as, 50*(4+(-1))
=150. This wage reflects a base pay for the effort made
(50%4=200) depending on the work history (captured by the
previous weight, 4) and a penalty for not giving expected
results for this work item (-50).

Length (if
Column Data STRING
Name Type type) Sensitive Value
CUST_NO BIG 12345
INTEGER
LASTNAME STRING 50 yes SMITH
FIRSTNAME STRING 50 yes JOHN
STREET STRING 150 Main Street 1
001-456-
9435278
HOUSENUMBER STRING 10
CITY STRING 100 Los Angeles
ZIP CODE INTEGER 91423
COUNTRY STRING 150 Us
PHONENUMBER STRING 30
SSN STRING 15 yes

If, at step 326, performance management component 212
determines that the tasks have been fully completed by the
crowd and that the SLA has not been violated, the method
proceeds to step 328, depicted in FIG. 3C, where the crowd
sourcing manager 122 invokes the quality management com-
ponent 224. At step 328, the quality management component

10

15

20

25

30

35

40

45

50

55

60

20

assesses the quality of the completed work. At step 330, the
crowd sourcing manager invokes the crowd hierarchy man-
ager 220 to update the crowd hierarchy 132, as described
above. At step 332, the crowd sourcing manager 122 invokes
work cost calculator 226 to compute a wage and complete the
workflow.

Referring now to FIG. 4, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 4 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 5, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 4)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 5 are intended to be
illustrative only and embodiments of the disclosure are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement

US 9,092,749 B2

21

(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and information governance crowd sourcing.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While the foregoing is directed to embodiments of the
present disclosure, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A non-transitory computer readable medium compris-
ing:

computer-readable program code, that, when executed by a

processor, performs an operation comprising:

responsive to receiving a data quality exception identi-
fying a data quality error of a value of data in a data
store, identifying a performance level required to cor-
rect the data quality error;

selecting, from a crowd hierarchy, a first crowd meeting
the defined performance level, wherein the crowd
hierarchy ranks the performance of each of a plurality
of crowds relative to the performance of each of the
other crowds, wherein the plurality of crowds
includes the first crowd; and

routing the data quality error to the selected crowd for
correction.

2. The computer program product of claim 1, wherein the
performance level is identified based on a type of the data
quality exception, wherein the data quality error is based on
one or more of: (i) a format of the value, (ii) a correctness of
the value, and (iii) a syntax of the value, the operation further
comprising emitting a data quality exception, comprising:

defining a data quality standard, wherein the data quality

standard comprises at least one of: (i) a format of data
values, (ii) a correctness of data values, and (iii) a syntax
of data values;

monitoring the data in the data store; and

upon detecting the data quality error in the value, emitting

the data quality exception, wherein the data quality error
is related to a violation of the data quality standard by the
value;

15

25

40

45

50

55

60

65

22

wherein the data quality exception specifies the value hav-
ing the data quality error and a set of attributes of the data
quality error, wherein the attributes comprise at least a
type of the data quality error.

3. The computer program product of claim 2, wherein the
data quality exception is emitted responsive to one of: (i)
receiving user input specifying a data quality error, and (ii)
receiving a notification specifying a data quality error.

4. The computer program product of claim 1, wherein
identifying the performance level comprises, in respective
instances, each of:

determining a privacy level of the data having the data

quality error;

identifying, based on the privacy level of the data, a crowd

platform to correct the data quality error, wherein the
crowd platform is one of (i) an internal crowd platform,
wherein members of the internal crowd platform are
employees of an organization owning the data store, (ii)
an external crowd platform, wherein members of the
external crowd platform are not employees of the orga-
nization owning the data store, and (iii) a partner crowd
sourcing platform, wherein members of the partner
crowd platform are not employees of the organization
owning the data store, wherein the partner crowd plat-
form agrees to security and privacy requirements to ful-
fill the sensitivity level, wherein the first crowd is part of
the identified crowd platform; and

determining whether work completed by a first crowd must

be verified by a second crowd, wherein the second crowd
has a higher position in the crowd hierarchy than the first
crowd.

5. The computer program product of claim 1, further com-
prising:

determining that a service level agreement has been vio-

lated by the first crowd;
upon determining that the violation of the service level
agreement comprises the first crowd being unable to
correct the error within a defined time period within
which the data quality error must be corrected, routing
the data quality error to additional crowd members;

upon determining that the violation of the service level
agreement comprises the first crowd being unable to
correct the error within the defined time period, routing
the data quality error to a second crowd, wherein the
second crowd completes tasks more efficiently than the
first crowd; and

responsive to receiving a first data quality correction from

the first crowd, upon determining that the violation of
the service level agreement comprises a quality of the
first correction falling below a specified threshold, rout-
ing the data quality error to the third crowd, wherein the
third crowd has a performance record greater than the
performance record of the first crowd, wherein the per-
formance record is indicative of a level of skill of each
crowd.

6. The computer program product of claim 1, further com-
prising implementing a crowd hierarchy, comprising:

identifying a plurality of crowds, wherein each of the plu-

rality of crowds comprises a plurality of people, wherein
each of the plurality of crowds comprises individuals
from the same crowd or different crowds;

for each of the plurality of crowds:

assigning scores to each crowd, wherein the scores relate
to attributes of the respective crowd, wherein the
attributes comprise a level of expertise and a level of
productivity of the respective crowd, wherein the

US 9,092,749 B2

23

scores correspond to the respective crowd as a whole
and to each of the plurality of people in the crowd; and

upon completion of a task by a respective crowd, updat-
ing the scores of the respective crowd, wherein the
scores are increased for a positive performance,
wherein the scores are decreased for an unsatisfactory
performance; and

ranking, based on the scores, each of the plurality of
crowds.

7. The computer program product of claim 1, further com-
prising providing a work cost calculator to compute the cost
of correcting the data quality error, wherein computing the
cost of correcting the data quality error comprises at least one
of:

prior to routing the data quality error, computing the cost of

assigning the data quality error to each of the crowds for
correction based on at least one of a number of data
quality error, an amount of time required to correct the
data quality error, and a skill level required to correct the
data quality error;

subsequent to routing the data quality error to the first

crowd, computing the cost of assigning the data quality
error to additional crowd members; and

subsequent to routing the data quality error to the first

crowd, computing the cost of assigning the data quality
error to a second crowd having a higher position in the
crowd hierarchy than the first crowd.

8. The computer program product of claim 1, further com-
prising computing a wage for the first crowd, comprising:

computing a base wage for the first crowd, wherein the base

wage is based on a position of the first crowd_in the
crowd hierarchy;

upon satisfactory completion of the data quality correc-

tions by the first crowd, increasing the respective base
wage to a modified wage;

upon unsatisfactory completion of the data quality correc-

tions by the first crowd, decreasing the respective base
wage to a modified wage; and

returning the respective modified wage as the computed

wage for the first crowd.

9. A system, comprising:

one or more computer processors; and

amemory containing a program, which when executed by

the one or more computer processors is configured to

perform an operation, comprising:

responsive to receiving a data quality exception identi-
fying a data quality error of a value of data in a data
store, identifying a performance level required to cor-
rect the data quality error;

selecting, from a crowd hierarchy, a first crowd meeting
the defined performance level, wherein the crowd
hierarchy ranks the performance of each of a plurality
of crowds relative to the performance of each of the
other crowds, wherein the plurality of crowds
includes the first crowd; and

routing the data quality error to the selected crowd for
correction.

10. The system of claim 9, wherein the performance level
is identified based on a type of the data quality exception,
wherein the data quality error is based on one or more of: (i)
a format of the value, (ii) a correctness of the value, and (iii)
a syntax of the value, the operation further comprising emit-
ting a data quality exception, comprising:

defining a data quality standard, wherein the data quality

standard comprises at least one of: (i) a format of data
values, (ii) a correctness of data values, and (iii) a syntax
of data values;

10

20

25

30

35

40

45

55

60

65

24

monitoring the data in the data store; and

upon detecting the data quality error in the value, emitting
the data quality exception, wherein the data quality error
is related to a violation of the data quality standard by the
value;

wherein the data quality exception specifies the value hav-

ing the data quality error and a set of attributes of the data
quality error, wherein the attributes comprise at least a
type of the data quality error.

11. The system of claim 10, wherein the data quality excep-
tion is emitted responsive to one of: (i) receiving user input
specifying a data quality error, and (ii) receiving a notification
specifying a data quality error.

12. The system of claim 9, wherein identifying the perfor-
mance level comprises, in respective instances, each of:

determining a privacy level of the data having the data

quality error;

identifying, based on the privacy level of the data, a crowd

platform to correct the data quality error, wherein the
crowd platform is one of (i) an internal crowd platform,
wherein members of the internal crowd platform are
employees of an organization owning the data store, (ii)
an external crowd platform, wherein members of the
external crowd platform are not employees of the orga-
nization owning the data store, and (iii) a partner crowd
sourcing platform, wherein members of the partner
crowd platform are not employees of the organization
owning the data store, wherein the partner crowd plat-
form agrees to security and privacy requirements to ful-
fill the sensitivity level, wherein the first crowd is part of
the identified crowd platform; and

determining whether work completed by a first crowd must

be verified by a second crowd, wherein the second crowd
has a higher position in the crowd hierarchy than the first
crowd.

13. The system of claim 9, further comprising:

determining that a service level agreement has been vio-

lated by the first crowd;
upon determining that the violation of the service level
agreement comprises the first crowd being unable to
correct the error within a defined time period within
which the data quality error must be corrected, routing
the data quality error to additional crowd members;

upon determining that the violation of the service level
agreement comprises the first crowd being unable to
correct the error within the defined time period, routing
the data quality error to a second crowd, wherein the
second crowd completes tasks more efficiently than the
first crowd; and

responsive to receiving a first data quality correction from

the first crowd, upon determining that the violation of
the service level agreement comprises a quality of the
first correction falling below a specified threshold, rout-
ing the data quality error to the third crowd, wherein the
third crowd has a performance record greater than the
performance record of the first crowd, wherein the per-
formance record is indicative of a level of skill of each
crowd.

14. The system of claim 9, further comprising implement-
ing a crowd hierarchy, comprising:

identifying a plurality of crowds, wherein each of the plu-

rality of crowds comprises a plurality of people, wherein
each of the plurality of crowds comprises individuals
from the same crowd or different crowds;

for each of the plurality of crowds:

assigning scores to each crowd, wherein the scores relate
to attributes of the respective crowd, wherein the

US 9,092,749 B2

25

attributes comprise a level of expertise and a level of
productivity of the respective crowd, wherein the
scores correspond to the respective crowd as a whole
and to each of the plurality of people in the crowd; and

upon completion of a task by the first a respective crowd,
updating the scores of the respective crowd, wherein
the scores are increased for a positive performance,
wherein the scores are decreased for an unsatisfactory
performance; and

ranking, based on the scores, each of the plurality of
crowds.

15. The system of claim 9, further comprising providing a
work cost calculator to compute the cost of correcting the data
quality error, wherein computing the cost of correcting the
data quality error comprises at least one of:

prior to routing the data quality error, computing the cost of

assigning the data quality error to each of the crowds for
correction based on at least one of a number of data
quality error, an amount of time required to correct the
data quality error, and a skill level required to correct the
data quality error;

5

10

15

20

26

subsequent to routing the data quality error to the first
crowd, computing the cost of assigning the data quality
error to additional crowd members; and

subsequent to routing the data quality error to the first
crowd, computing the cost of assigning the data quality
error to a second crowd having a higher position in the
crowd hierarchy than the first crowd.

16. The system of claim 9, further comprising computing a

wage for the first crowd, comprising:

computing a base wage for the first crowd, wherein the base
wage is based on a position of the first crowd_in the
crowd hierarchy;

upon satisfactory completion of the data quality correc-
tions by the first crowd, increasing the respective base
wage to a modified wage;

upon unsatisfactory completion of the data quality correc-
tions by the first crowd, decreasing the respective base
wage to a modified wage; and

returning the respective modified wage as the computed
wage for the first crowd.

#* #* #* #* #*

